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Abstract We study the existence and stability of stationary states in an exactly solvable 
reaction-diffusion model. under conditions of pmial xbsorption and reflexion at a boundary. 
The rich variety of time-independent solutions-which, if stable, are candidates to describe the 
long-time asymptotic state of the system-suggests that such mixed boundary conditions can 
strongly affect the solution set of more general rextion-diffusion models. This conclusion is 
relevant in many applications. in particular, in nucleating systems. 

In recent years, much attention has been devoted to the study of reaction4iffusion models. 
This interest is motivated by the relevance of such models in the applications to several 
areas of science and-from a more fundamental viewpoint-because of their paradigmatic 
role as self-organizing non-equilibrium complex systems. Indeed, the analytical description 
of pattern formation in physico-chemical and biological systems is mainly restricted to 
reaction-diffusion equations [I]. 

A point of practical interest in the study of the appearance of organized structures in 
complex systems regards the effect of boundary conditions on their evolution [2, 31. In this 
paper, we are concerned with the influence of partial-reflexion (albedo) boundary conditions 
on the existence and stability of stationary patterns in reaction-diffusion systems. To deal 
with this problem we study an analytically tractable model-the Ballast resistor. 

The Ballast resitor reaction-diffusion model [4] describes an electrical device consisting 
on a superconducting wire with critical temperature T,, carrying a constant current I and 
immersed in a heat bath at constant temperature To. According to the energy balance at 
each point along the wire, the local temperature can be below or above the critical value Tc. 
Therefore, at a given time, the temperature profile on the wire consists of structured zones 
of normal or superconductor phase. Energy conservation implies that the temperature field 
T ( x ,  t )  satisfies the reaction-diffusion equation 

(1) 
where O(T - TJ is a Heaviside step function describing the temperature dependence of 
resistivity, and Tb c( I*  acts as an external control parameter. We have used dimensionless 
spatial and temporal variables, assuming that the specific heat of the wire, its heat 
conductivity and the heat transfer rate to the bath are constants. Moreover, without loss of 
generality, we have taken TO = 0. 

The reaction terms in ( I )  are piecewise linear. This fact makes it possible to treat the 
problem analytically, although preserving its nonlinear character [ 5 ] .  Besides describing the 
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2 &T - a,T = -T + ThO(T - T,) 
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Ballast resistor, the equation can be seen to represent a mimic of the well known Schlogel 
model of bistable reaction kinetics [6]. In this case, the field T ( x ,  t )  would represent the 
density of the relevant chemical species. 

S A Hmsan et a1 

We are interested in the stationary solutions of (I), which satisfy 

T - KO(T - T,). (2) 

We concentrate in the case Th > T,, as this condition permits the existence of non-trivial 
solutions. For an infinite system (--00 e x < +CO), the only bounded solutions to this 
equation are constant, T ( x )  = 0 and T(x) = Tc. In fact, according to 

(3) 

being positive or negative, the solution to the timedependent problem-which has the form 
of a travelling wave-asymptotically approaches one of those states. The same problem in 
a finite domain has been treated in detail in [5].  

Here, we consider instead a semi-infinite system in the positive x-axis. For this second- 
order differential problem, the most general (linear) boundary condition at x = 0 is a 
homogeneous combination of the distribution T and its derivative, 

dZT 
dxZ 
-= 

z = 1 - 2TJG 

[ E - k T ]  = O  
x a  

(4) 

In the Ballast model, this albedo boundary condition represents a partial absorption and 
reflexion of energy flux at the origin. The extreme cases, k --f 0 and k + w, correspond 
respectively to vanishing heat flux (dT/dxl,,o = 0, Neumann boundary condition) and to 
vanishing temperature (TI,* = 0, Dirichlet boundary condition). These cases are analysed 
in [3]. Intermediate values of the albedo parameter describe a partially isothermic and 
adiabatic contact at the wire end. This interpretation can be straightforwardly extended to 
the case of chemical reactions, where T ( x )  represents a stationary particle density. 

Figure 1. Mechanical potential and initial conditions for various solutions with albedo boundary, 
in the mechanical analogy of (2). 



Stutionary stafes in a reaction-diffusion system 5131 

In order to analyse the existence of stationary states we exploit a mechanical analogy 
of (2). Associating T with position and x with time, this equation represents Newton's law 
for a particle of unitary mass under the action of the potential 

- T 2 / 2  if T < Tc 

if T =- T, I - T 2 / 2  + Th(T - Tc) 
V ( T )  = 

In this analogy, the albedo boundary condition implies that at the initial time, x = 0, the 
particle velocity is given by its position times the albedo parameter k .  This condition implies 
that not all the trajectories of the particle are acceptable as solutions of OUI problem. 

In figure 1 we plotted, along with the shape of the potential V ( T ) ,  the initial values 
of T ,  the total energy, and the initial velocity direction for each type of solutions we were 
able to find under albedo boundary conditions. These types differ not only in the shape and 
in the value of the solution T ( x ) ,  but also in the range of the parameters k and z where 
they exist. Figure 2 shows the domains of existence for each type in the ( k ,  z )  plane, and 
in figures 3(u)  and 3(b) we plot a schematic graph of these solutions. Numbering is in 
correspondence with figure 1. 

-1 0 1 k 
Figure 2. Existence domains of he solutions shown in figure I, in the (k. z )  space Solutions 
number I md 8 exist on the lines k = - 1  and k = I. respectively. 

Figure 3. Schematic representation of the stationary solutiolls shown in figure 1 .  as functions 
of the space coordinate x ;  (a) unstable states, (b)  stable states. 
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In these figures, we have not taken into account the trivial stationary solution T ( x )  = 0, 
which exists for any value of k and z .  

Observe that, from physical considerations, we have required that the solution T ( x )  be 
bounded for all x .  We have also discarded the unrealistic oscillatory solutions which, in 
the mechanical analogy, correspond to intermediate energies, between the minimum and the 
lowest maximum of V ( T ) .  

Except for the trivial solution, no bounded stationary state exists for k < - 1. This can 
be interpreted in physical terms from the fact that a negative albedo parameter represents 
a boundary in which the reflected heat flux is greater than the incident one. In this case, 
energy is being continuously injected into the system from outside through the contact. 
Therefore, if the injection rate is too large (k  too negative), dissipative effects fail to keep 
the wire temperature bounded. 

The explicit forms of the stationary temperature distributions T ( x )  can be found by direct 
integration of (2) and, for the sake of conciseness, are not included here. The piecewise- 
linear character of the equation implies that the solution is pieced together from exponential 
portions. These portions have to be matched by equating their values and derivatives at the 
critical coordinate xe. defined by T ( x , )  = Tc. Therefore, the problem is essentially a linear 
algebraic one, although it can become rather complex for solutions such as numbers 4 and 
8, which have two critical coordinates. 

Form ( I ) ,  linear stability analysis of the time-independent solutions leads to the 
following equation for the perturbation from the stationary state, q ( x ,  f): 

In this linear reaction-diffusion equation, the delta function on T can be replaced by 
S ( x  - x c ) ,  once the critical coordinate x, is known. For the solutions with two critical 
coordinates, 6(T - Tc) has to be replaced by a sum of two delta functions on x .  

Proposing @ ( x ,  f )  = exp(hr)Y(x), the solution for Y(x) is piecewise exponential. The 
pieces are matched requiring continuity of Y and a finite discontinuity in its derivative, due 
to the delta function in x,. The sign of h determines the stability of the stationary solution. 

From this analysis it turns out that the states shown in figure 3(a) are unstable, whereas 
those plotted in figure 3(b) are stable, The trivial stationary solution is stable for k > 0 and 
unstable otherwise. This can be easily understood observing that fo rk  c 0, as soon as the 
temperature field is positive at the boundary, there is a net heat flux entering the system. 
For k z 0 instead, heat is absorbed at the contact and the temperature tends to decrease. 

As a rule, under conditions of coexistence of stationary solutions, stability is observed 
in the states which present the smaller zones of superconductor phase. The dissipation in the 
normal phase seems to stabilize the structure of the temperature field. However, for k z 0, 
there are several zones of multistability (compare figures 2 and 3(b)), in which some of the 
states 6 to 9, as well as the trivial solution T ( x )  = 0, are simultaneously stable. Hence, 
in the whole evolutionary problem governed by ( I ) ,  the asymptotic temperature profile will 
be selected by the initial condition. On the other hand, for negative albedo, the only stable 
solution is number IO. This high-temperature distribution is the only state able to dissipate 
the heat flux entering the wire through its end. 

Among the stable states depicted in figure 3(b), numbers 7 and 9 deserve particular 
consideration. These structures present a change of phase between a finite region adjacent 
to the boundary and the remaining of the wire. Near x = 0, state number 7 is in the 
superconducting phase and state number 9 is in the normal phase. At the critical point xc 
they cross the critical value T, and invert their phase. The temperature profiles of these 
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states are, respectively, given by 

and 

where q = exp(x,). For state number 7 q = [ ( k  - l ) / z ( k  + I)]’”, and for state number 9 
we have p = [2k + (4kZ - 4z(kZ - 1))”2] /22(1  + k ) .  

In a generalized interpretation of the Ballast model, these two-phase distributions can be 
seen as the result of two competing processes, namely, nucleation-which tends to enlarge 
the finite region near the boundary by aggregation-and evaporation-which induces this 
nucleation zone to shrink. But it is well known that nucleating systems not subject to 
boundary conditions are completely unstable 171. In free space, a nucleating region either 
grows catastrophically due to the prevailing of aggregation, or shrinks up to disappearance 
by evaporating. With albedo boundary conditions, instead, we see that a non-trivial stable 
stationary state does exist. If this structure succeeds to be that asymptotic distribution in 
the time-dependent problem, equation ( I ) ,  we can assert that such boundary conditions are 
able to stabilize the nucleation process, even in a semi-infinite domain. 

The rich variety of stationary states found for the simple reaction-diffusion model 
considered here under albedo boundary conditions-in particular, compared with the free- 
space case, and even with the limits of Dirichlet and Neumann boundaries--suggests that, 
generally, albedo introduces non-trivial features in the evolution of similar systems. Except 
for a few previous works [S, 21, this point seems to have passed unnoticed in the study of 
reaction-diffusion processes. However, in view of the relevance of boundary conditions in 
actual applications of those processes [ 11-and, in particular, regarding recent experimental 
results on reflexion and refraction of chemical waves [8]--it is indeed worth considering 
these more realistic boundary conditions. 
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